3.844 \(\int \frac{\sqrt{-1+x} \sqrt{1+x}}{x} \, dx\)

Optimal. Leaf size=34 \[ \sqrt{x-1} \sqrt{x+1}-\tan ^{-1}\left (\sqrt{x-1} \sqrt{x+1}\right ) \]

[Out]

Sqrt[-1 + x]*Sqrt[1 + x] - ArcTan[Sqrt[-1 + x]*Sqrt[1 + x]]

________________________________________________________________________________________

Rubi [A]  time = 0.004916, antiderivative size = 34, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {101, 92, 203} \[ \sqrt{x-1} \sqrt{x+1}-\tan ^{-1}\left (\sqrt{x-1} \sqrt{x+1}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[-1 + x]*Sqrt[1 + x])/x,x]

[Out]

Sqrt[-1 + x]*Sqrt[1 + x] - ArcTan[Sqrt[-1 + x]*Sqrt[1 + x]]

Rule 101

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a +
b*x)^m*(c + d*x)^n*(e + f*x)^(p + 1))/(f*(m + n + p + 1)), x] - Dist[1/(f*(m + n + p + 1)), Int[(a + b*x)^(m -
 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[c*m*(b*e - a*f) + a*n*(d*e - c*f) + (d*m*(b*e - a*f) + b*n*(d*e - c*f))
*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && GtQ[m, 0] && GtQ[n, 0] && NeQ[m + n + p + 1, 0] && (Integ
ersQ[2*m, 2*n, 2*p] || (IntegersQ[m, n + p] || IntegersQ[p, m + n]))

Rule 92

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))), x_Symbol] :> Dist[b*f, Subst[I
nt[1/(d*(b*e - a*f)^2 + b*f^2*x^2), x], x, Sqrt[a + b*x]*Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
 EqQ[2*b*d*e - f*(b*c + a*d), 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{-1+x} \sqrt{1+x}}{x} \, dx &=\sqrt{-1+x} \sqrt{1+x}-\int \frac{1}{\sqrt{-1+x} x \sqrt{1+x}} \, dx\\ &=\sqrt{-1+x} \sqrt{1+x}-\operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\sqrt{-1+x} \sqrt{1+x}\right )\\ &=\sqrt{-1+x} \sqrt{1+x}-\tan ^{-1}\left (\sqrt{-1+x} \sqrt{1+x}\right )\\ \end{align*}

Mathematica [B]  time = 0.11536, size = 101, normalized size = 2.97 \[ \frac{\sqrt{1-x} \left (x^2-\sqrt{x^2-1} \tan ^{-1}\left (\sqrt{x^2-1}\right )-1\right )+2 (x-1) \sqrt{x+1} \sin ^{-1}\left (\frac{\sqrt{1-x}}{\sqrt{2}}\right )}{\sqrt{-(x-1)^2} \sqrt{x+1}}-2 \tanh ^{-1}\left (\sqrt{\frac{x-1}{x+1}}\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sqrt[-1 + x]*Sqrt[1 + x])/x,x]

[Out]

(2*(-1 + x)*Sqrt[1 + x]*ArcSin[Sqrt[1 - x]/Sqrt[2]] + Sqrt[1 - x]*(-1 + x^2 - Sqrt[-1 + x^2]*ArcTan[Sqrt[-1 +
x^2]]))/(Sqrt[-(-1 + x)^2]*Sqrt[1 + x]) - 2*ArcTanh[Sqrt[(-1 + x)/(1 + x)]]

________________________________________________________________________________________

Maple [A]  time = 0.006, size = 35, normalized size = 1. \begin{align*}{\sqrt{-1+x}\sqrt{1+x} \left ( \sqrt{{x}^{2}-1}+\arctan \left ({\frac{1}{\sqrt{{x}^{2}-1}}} \right ) \right ){\frac{1}{\sqrt{{x}^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-1+x)^(1/2)*(1+x)^(1/2)/x,x)

[Out]

(-1+x)^(1/2)*(1+x)^(1/2)/(x^2-1)^(1/2)*((x^2-1)^(1/2)+arctan(1/(x^2-1)^(1/2)))

________________________________________________________________________________________

Maxima [A]  time = 1.52845, size = 18, normalized size = 0.53 \begin{align*} \sqrt{x^{2} - 1} + \arcsin \left (\frac{1}{{\left | x \right |}}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+x)^(1/2)*(1+x)^(1/2)/x,x, algorithm="maxima")

[Out]

sqrt(x^2 - 1) + arcsin(1/abs(x))

________________________________________________________________________________________

Fricas [A]  time = 1.60815, size = 88, normalized size = 2.59 \begin{align*} \sqrt{x + 1} \sqrt{x - 1} - 2 \, \arctan \left (\sqrt{x + 1} \sqrt{x - 1} - x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+x)^(1/2)*(1+x)^(1/2)/x,x, algorithm="fricas")

[Out]

sqrt(x + 1)*sqrt(x - 1) - 2*arctan(sqrt(x + 1)*sqrt(x - 1) - x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{x - 1} \sqrt{x + 1}}{x}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+x)**(1/2)*(1+x)**(1/2)/x,x)

[Out]

Integral(sqrt(x - 1)*sqrt(x + 1)/x, x)

________________________________________________________________________________________

Giac [A]  time = 2.93792, size = 43, normalized size = 1.26 \begin{align*} \sqrt{x + 1} \sqrt{x - 1} + 2 \, \arctan \left (\frac{1}{2} \,{\left (\sqrt{x + 1} - \sqrt{x - 1}\right )}^{2}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+x)^(1/2)*(1+x)^(1/2)/x,x, algorithm="giac")

[Out]

sqrt(x + 1)*sqrt(x - 1) + 2*arctan(1/2*(sqrt(x + 1) - sqrt(x - 1))^2)